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1 Introduction and results

Over the last few years several interesting field theories at finite density have been analyzed

using probe D-branes [1, 2] in the gauge gravity correspondence [3–5]. Typically one starts

with the supergravity background corresponding to a black Dp brane. The dual field theory

is maximally supersymmetric SU(Nc) Yang-Mills (SYM) theory in p+1 dimensions [6]. In

the special case of p = 3 the gauge theory, N = 4 SYM, is a conformal field theory, but for

other values of p the gauge coupling is dimensionfull, so the gauge theory has an intrinsic

scale set by the ’t Hooft coupling constant λ = g2
YMNc. In this background one introduces

matter by adding additional fields in the fundamental representation of the SU(Nc) gauge

group. In the gravity dual the dynamics of these extra matter fields is captured by the

introduction of a probe Dq brane. In the limit of large Nc loops of the fundamental

fields can be neglected, as they give subleading (in Nc) effects. The fundamental matter

simply experiences dynamics mediated by the strong interactions of the background SYM.

Correspondingly in the gravitational description the probe brane in this limit does not

backreact on the geometry. Many different choices of probe branes are possible. The

localized matter can live in all of the p + 1 dimensions of the background SYM, but it

can also occupy lower dimensional defects. We can add supersymmetric matter with an

equal amount of fermions and bosons (e.g. whenever the number of relative ND directions

between Dp and Dq brane is 4) or fermions only (when the relative number of ND directions

is 6). The most studied systems of this type are probably the D3/D7 system of [2] that was

extensively studied at finite density in [7–13] and most recently in [14], the D3/D5 system

of [1], the D4/D6 system [15] studied at finite density in [16] and the Sakai-Sugimoto

model [17] (or rather a simplified version of it with a single chiral multiplet on a 3+1
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p Free energy Heat capacity Resistivity

0 T 2/5 T−3/5 no electric field possible

1 T 1/4 T−3/4 T 3/2

2 T 2/3 T−1/3 T 5/3

3 T q-dependent T 2

4 T 2 T T 3

Table 1. Leading density dependent contribution to the free energy, heat capacity and resistivity

for Dq probe branes in a Dp background. This scaling is universal in that it only depends on the p

of the background brane and is independent of the q of the probe brane. The only exception is the

heat capacity in the case of a background D3 brane, where the universal linear in T contribution

to the free energy does not contribute to the heat capacity (rather it gives a finite entropy density

at zero temperature). So the subleading term in the free energy (which is q-dependent) becomes

the leading term in the heat capacity.

dimensional defect coupled to uncompactified supersymmetric 4+1 SYM) studied at finite

density in [18–24]. But of course there are many more options, basically any combination

of Dp and Dq system gives a new, different holographic matter system.

In order to organize what is known about the properties of these holographic matter

systems, we identify two interesting properties that are q-independent, that is they only

depend on the dimensionality of the background Dp brane and are insensitive to the details

of the probe. We will mostly focus on the case where the matter multiplets we added

are massless. Despite this, it is straightforward to show that two of the basic material

properties, the heat capacity and the DC conductivity, are completely determined (at large

density, small temperature) by the properties of a single heavy quark, represented in the

bulk as a semi-classical string ending on the brane. As the properties of the string are

completely independent of what Dq probe brane they eventually end on, this equivalence

makes it clear that heat capacity and conductivity of the probe brane can not depend

on q either.

In table 1 we summarized our main results for the heat capacity and conductivity.

While some of these have appeared in the literature before (in particular the D3/D7 system

was analyzed in [25] and the D4/D8 system in [24]) relating it to the properties of a

single string and noting the q-independence allows us to give a answer for the generic

Dp/Dq system in this compact form. If one is looking for a system with fermions only, the

linear (in T ) heat capacity of the D8 probe in the D4 background looks encouraging [24].

In this case the only matter we added were fundamental fermions, so one may take the

linear heat capacity as a strong hint that the fermions indeed dominate the finite density

physics. One caveat one should note here is that, while the only matter we added that is

explicitly charged under the global U(1)B for which we turn on a chemical potential are

the fundamental fermions, there are instantonic configurations in the 5d SYM that can

also carry U(1) charge. This is the well known anomaly-inflow mechanism of [26]. As the

linear heat capacity is universal to all probes of the D4 background, including for example

the supersymmetric D6 brane of [15] that introduces bosons as well as fermions, it is clear

that more studies are needed to settle the microscopic nature of the properties one finds.
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The organization of this paper is as follows. In the next section we review the thermo-

dynamics of Dp branes and introduce the corresponding background geometry. In section

3 we calculate the free energy of a single string in the general Dp background and show

that the heat capacity of any Dq probe, to leading order in the density, is just this free

energy of a single string times the density. We also obtain from this the speed of sound

which, unlike the heat capacity, depends on the details of the probe. In section 4 we gen-

eralize this to the massive case and show that the DBI receives the relevant contribution

at low temperatures from fundamental strings dissolved in the Dq probe. In section 5 we

calculate the drag experienced by a single string and show that this directly gives the DC

conductivity of the generic Dq probe brane. In section 6 we turn to the DC conductivity of

Dq probe matter at zero density. This quantity is no longer q-independent but depends on

details of the probe. We briefly comment on cases in which one has a resistivity linear in

temperature. We conclude in section 7. Our main results are summarized in table 1 (the

universal heat capacity and conductivity at temperatures much less than the scale set by

the charge density) and figures 1 and 2 (the non-universal speed of sound and zero density

conductivity).

2 Thermodynamics of the Dp brane

The thermodynamics of the general Dp brane appeared e.g. in [6, 27, 28] where we will

mostly follow the conventions of the last reference. The near horizon geometry of a stack of

non-extremal Nc Dp branes is described by the following metric, dilaton and RR form fields:

ds2 = H−1/2(−fdt2 + dx2
p) + H1/2

(

du2

f
+ u2dΩ2

8−p

)

eΦ = H
3−p

4 ,

C01...p = H−1

where H(u) = (L/u)7−p and f(u) = 1 − (uh/u)7−p. It is convenient to work in units in

which the curvature radius of the supergravity solution is L = 1, so that the string length

becomes

lp−7
s = gsNc(4π)

5−p

2 Γ

(

7 − p

2

)

(2.1)

or better expressed in terms of the dimensionfull Yang-Mills coupling g2
YM = 2πgs(2πls)

p−3

with λ = g2
YMNc as

l2(p−5)
s = 27−2pπ

9−3p

2 Γ

(

7 − p

2

)

λ (2.2)

The temperature T is given in terms of uh via

uh =

(

4πT

7 − p

)2/(5−p)

In these units the supergravity on-shell action, which is minus the free energy density

ω times the volume of the field theory spacetime, is independent of λ except for the overall

– 3 –
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prefactor, so the free energy scales as 1
g2

s l8s
∼ λ

p−3
5−p . The temperature dependence then by

dimensional analysis has to be T n = T
2(7−p)
5−p . Including order 1 numbers one has

ω

N2
= − 1

n − 1

ǫ

N2

= − 1

n

sT

N2
= (p − 5)

(

229−5p(7 − p)−3(7−p)π13−3pΓ

(

9 − p

2

)2
)

1
5−p

λ
p−3

(5−p) T n (2.3)

where ǫ, f and s are the energy-, free energy- and entropy-density respectively. Corre-

spondingly the speed of sound is c2
s = 1/(n − 1) = (5 − p)/(9 − p).

3 Free energy of a single quark and the heat capacity of a Dq probe

The shift in the free energy of a single quark (often somewhat loosely referred to as the

mass shift) due to the horizon is simply given by the change in length of the string, uh,

times the tension of the quark, 1/(2πl2s), so

∆m =
uh

2πα′ =

(

26−pπ(3−p)/2Γ

(

7 − p

2

)

(7 − p)−2

)
1

5−p

λ
1

5−p T
2

5−p (3.1)

The shift in free energy is negative. For p = 3 this reduces to the result ∆m =
√

2λ
2 T

of [29].∗ From this one can get the entropy of the single quark as S = ∂(∆m)/∂T and

similarly the contribution to the heat capacity from a single quark. We want to show

that the free energy of a probe Dq brane describing massless flavors, potentially localized

on a defect, is simply d∆m, where d is the number density of quarks (which we refer to

as baryon number density, even though we are taking the convention that a single quark

carries U(1)B charge 1).

To calculate the heat capacity of the probe brane directly, one starts with the Dirac-

Born-Infeld (DBI) action describing the worldvolume fluctuations of the brane. Here and

in the rest of the paper we only consider black hole embeddings, that is embeddings of the

brane in which the worldvolume crosses the black hole horizon. If the brane ends outside

the horizon an explicit source of U(1)B charge has to be introduced and the properties

of the brane depend crucially on the properties of this object. For massless flavors the

embedding (in some frame) always has the form AdSds+2 × Sq−ds−1. Here ds denotes the

number of spatial dimensions of the defect on which the flavors associated with the Dq

brane probe are localized. Obviously ds ≤ p (the defect can at best fill all of the field

theory dimensions). In order to be able to turn on an electric field so we can talk about a

conductivity we also need ds ≥ 1, the heat capacity can be calculated even for ds = 0. For

massless flavors, the only field that is turned on is the time component of the gauge field;

∗The normalization for g2
YM we are using here follows [6, 28] and differs by a factor of 2 from [29] so that

in that work λ̃ = 2λ. As explained in [30] this difference can be traced through to a different convention

used for the U(Nc) generators in the literature on D-branes (where Tr(TaTb) = δab) and gauge theories

(where typically Tr(TaTb) = 1
2
δab).

– 4 –
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it is governed by the DBI action

SDBI = −N
∫

duuν
√

1 − A′2
0 , (3.2)

where

ν =
(p − 7)(q − 2ds − 4 + p)

4
+ q − ds − 1 , (3.3)

and the prime denotes a derivative with respect to u. The prefactor N is the product of

the brane tension and the volume of the internal manifold and so depends on details of the

probe brane. Fortunately we will not need it here. We also absorbed a factor of 2πα′ into

A0. As A0 only appears derivatively, we can directly integrate the equations of motion

A′
0 =

d̃
√

u2ν + d̃2
= 1 − 1

2

u2ν

d̃2
+ O(u4ν) , (3.4)

where the integration constant d̃ as in [25] is proportional to the baryon number density d,

d̃ = (2πα′N )−1d. Note that both gauge field solution and on-shell lagrangian are actually

independent of temperature. The temperature only comes into play as the lower end of

the integration region.

The on-shell value of the action divided by the volume of the field theory spacetime

gives us minus the free energy density ω in the grand-canonical ensemble. Plugging back

in the solution for A′
0 this gives

ω = N
∫ ∞

uH

du
u2ν

√

u2ν + d̃2
(3.5)

where the divergent integral in Ω can simply be regulated by background subtraction or a

local counterterm. Since this is the free energy in the grand-canonical ensemble, we want

to think of d̃ being a function of T and µ, where µ is the baryon number chemical potential.

They are related via the condition that A0 vanishes at the horizon, while A0 = µ at infinity

by the standard AdS/CFT dictionary. Hence

µ =

∫ ∞

uH

duA′
0. (3.6)

At zero temperature this gives

d̃ = γµν (3.7)

where γ =
(

1√
π
Γ(1 + 1

2ν )Γ(1
2 − 1

2ν )
)−ν

and

ω = − γN
1 + ν

(

d̃

γ

)1+ 1
ν

. (3.8)

At finite temperatures the integrals can still be done explicitly in terms of incomplete

Beta functions [9]. This was used in [25] to calculate the specific heat for the D3/D7

system and in [24] for the D4/D8 system. But to extract the low temperature behavior of

– 5 –
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the free energy and the specific heat, it is sufficient to directly expand the integrands in

eqs. (3.5), (3.6) at small u to extract the leading contributions at small uh:

ω = N
∫ ∞

0
L −N

∫ uH

0
L = − N

1 + ν
γ

(

d̃

γ

)1+ 1
ν

+ O(u2ν+1
h )

µ =

∫ ∞

0
A′

t −
∫ uh

0
A′

t =

(

d̃

γ

)
1
ν

− uh + O(u2ν+1
h )

(

d̃

γ

)
1
ν

= (µ + uh) + O(u2ν+1
h ). (3.9)

As in [9] we neglected density independent terms coming from the regulator. They have the

same temperature dependence as the leading order N2
c term from the adjoint matter. Since

they do not depend on the density at all they should not be regarded as a contribution from

the fluid we are studying, but simply a correction to the energy of the background plasma

due to the presence of the fluctuations of the dynamical flavor fields. The corresponding

density dependent part of the entropy density to leading order in the temperature is

sfluid = − ∂ω

∂T

∣

∣

∣

∣

fixed µ

= N d̃
∂uh

∂T
= d

∂∆m

∂T
. (3.10)

So as claimed, the entropy density is just d times the entropy of a single quark. The same

would be true for the free energy in the canonical ensemble, which we can obtain from

the free energy ω of the grand canonical ensemble via a Legendre transform. Finally, the

specific heat cV at constant volume and chemical potential is (for p 6= 3)

cV = T
∂S

∂T

∣

∣

∣

∣

fixed d

= dT
∂2(∆m)

∂T 2
∼ T

2
5−p . (3.11)

For the special case of p = 3 we have that uh = πT is linear in temperature, and hence

so is the free energy of the single string or the probe brane. The leading contribution to

the entropy is then a constant, temperature independent term that survives even at zero

temperature as emphasized in [9]. It would be very interesting to understand from the field

theory point of view how a single heavy quark in N = 4 SYM can have a zero-temperature

entropy of order
√

λ. In any case, this leading constant contribution to the energy doesn’t

make it into the heat capacity. Latter is then dominated by the first subleading term which

then scales as T 2ds as shown in [9].

Another interesting quantity one can compute is the speed of sound at low temperature.

Using the equation of state (3.8) one can obtain the following expressions for the pressure

and energy density

P =
N

1 + ν
γµν+1

ǫ = νP (3.12)

which implies c2
s = 1/ν. For D3/D7 system we recover conformal value c2

s = 1/3, while

for D4/D8 we get c2
s = 2/5 which is larger then the upper bound on the speed of sound

– 6 –
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Figure 1. Speed of sound squared c2, for all Dp/Dq systems with p=2, 3 or 4 and 4 or 6 ND

directions, as a function of ds, the number of spatial dimensions. Shape/color distinguishes p=4

(red circles), p=3 (green squares) and p=2 (blue triangles). Open/filled symbols are 6/4 ND

direction configurations. For p=3 the open and filled squares lie on top of each other.

proposed in [31, 32]. Unlike the specific heat (and the conductivity which we discuss below)

the speed of sound in general depends on all 3 integers characterizing the embedding, p, q

and ds. In figure 1 we display the speed of sounds for various Dp/Dq systems with 4 ND

and 6 ND directions respectively. Interestingly, for p=4 the speed of sound is always above

the conformal value and for p=2 below.

4 Massive quarks and specific heat

In the previous section we showed that the low temperature behavior of the entropy of a

Dq probe brane describing massless flavors, is equal to entropy of a single quark times the

number density of the quarks d. To understand the origin of this result, we will consider

here a slightly more complicated case. We will compute the free energy and specific heat

of a Dq probe with a non-trivial embedding profile, describing massive quarks in the dual

field theory.

Giving mass to the field theory quarks, requires a Dp/Dq brane setup with space

transverse to both sets of branes. The embedding of the Dq brane, is then parametrized by

one of the angular coordinates of this transverse space. Writing the metric of the (8−p)-th

dimensional sphere in the form

dΩ2
8−p = dθ2 + sin2 θdΩ2

k + cos2 θdΩ2
8−p−k−1 (4.1)

defines the embedding function θ(u). As discussed before, Ωk represents the k = q− ds − 1

dimensional sphere wrapped by the Dq brane. For reasons of stability we will only consider

Dp/Dq systems which are supersymmetric in the limit of zero temperature, thus q =

p + 2, p + 4 and k = 2, 3 respectively.†

†The case q = p is special and will not be discussed here.

– 7 –



J
H
E
P
1
1
(
2
0
0
9
)
0
1
7

The induced metric on the Dq brane is

ds2
Dq = u

7−p

2
(

−f(u)dt2 + dx2
ds

)

+
u− 7−p

2

f(u)

[

1 + u2f(u) (∂uθ)2
]

du2 + u
4−7+p

2 sin2 θdΩ2
k (4.2)

and the DBI action for this configuration

SDBI = −N
∫

du sink θuν
√

1 + u2f(u) (∂uθ)2 − A′2
0 (4.3)

The prefactor N is the product of the brane tension, the time interval and the internal

sphere Ωk. ν is defined in (3.3) and A0 is rescaled by 2πα′ as in the previous section.‡

Observe that A′
0 appears only derivatively in the action so we can integrate its equation of

motion in this case, too.

A′
0 =

√

√

√

√

1 + f(u)u2 (∂uθ)2

1 + u2ν sin2k θ
d̃2

(4.4)

The equation of motion for the profile function θ(u) is not analytically solvable except

in the limit of zero temperature [9]. Fortunately, the details of the embedding will not

be necessary.

Evaluating the action on-shell gives us the grand canonical potential. Here however

we choose to work with the Legendre transform of the action which corresponds to the free

energy at fixed charge density d.

F = d̃N
∫ ∞

uh

duL L =

√

1 + f(u)u2 (∂uθ)2

√

1 +
u2ν sin2k θ

d̃2
(4.5)

We immediately see the benefit of dealing with the canonical ensemble. If not for the factor
√

1 + u2ν sin2k θ
d̃2

, the free energy would be equal to that of a single static string configuration

times the charge density d (which is evident by comparing to the Nambu-Goto action in

the string frame metric). We will explore this similarity further in the following.

We are interested in the low temperature behavior of the free energy. Given that

T ∼ u
5−p

2
h an expansion of the free energy of the Dq probe around uh = 0 corresponds to

a low temperature expansion for any background Dp brane with p < 6.

F = F(uh)uh=0 +

(

∂F
∂uh

)

uh=0

uh + O(u2
h) (4.6)

Clearly, the zeroth order term does not contribute to thermodynamic quantities such as

the entropy or the specific heat. To evaluate the linear term it is convenient to follow an

approach similar to the previous section and rewrite the integral in (4.5) as

F = F1 −F2 = d

∫ ∞

0
L − d

∫ uh

0
L (4.7)

‡ The Wess-Zumino term trivially vanishes for stable Dp/Dq systems with the proposed profile.
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Taking the derivative of the second term with respect to uh and then the limit uh → 0 we

arrive at
∂F2

∂uh
|uh=0 = d (4.8)

This follows from the fact that f(u = uh) = 0 while ∂uθ|uh
is finite. For the trivial embed-

ding ∂uθ = 0 the first term in (4.7) is independent of the temperature. Then (4.8) gives

the only linear contribution to the free energy and we recover eq. (3.10). When however,

∂uθ 6= 0, the contribution of F1 to the linear term in the free energy expansion (4.6) may

be non-trivial. This is because the profile function θ(u) will generically depend on uh. To

evaluate this term, we rewrite it as

∂F1

∂uh
=

∫ ∞

0
du

(

∂L
∂f(u)

[∂uh
f(u)] +

∂L
∂ (∂uθ)

[∂uh
∂uθ] +

∂L
∂θ

[∂uh
θ]

)

(4.9)

Observe that in the limit uh → 0 the first term in (4.9) vanishes since limuh→0

[

∂f(u)
∂uh

]

= 0

for p < 6 and the integral is finite after regularization. Using the equations of mo-

tion for θ(u) and performing a partial integration, we reduce (4.9) to a boundary term.

More precisely,

F = F(0) + duh − uh lim
uh→0

[(

d
∂L

∂ (∂uθ)
− ∂Lbg

∂ (∂uθ)

)

(∂uh
θ)

]∞

uh

+ O(u2
h) (4.10)

Here the boundary term is regulated by background subtraction§ with Lbg the d → 0 limit

of (4.5).

For stable Dp/Dq embeddings of the type considered in this section θ(u) behaves close

to the boundary like [8, 33, 34]

θ ≃ π

2
+

m̂

u
2

5−p

+
ĉ

u
2k

5−p

+ · · · (4.11)

where m̂ and ĉ are proportional to the mass and the condensate of the dual theory but

independent of the temperature. This implies that

lim
u→∞

∂uh
θ = 0 (4.12)

thus any contribution from the embedding profile θ(u) to the free energy at low tempera-

tures comes from the near horizon region.

Let us now Taylor expand θ(u) in the vicinity of the horizon as

θ ≃
∞
∑

ℓ=0

(u − uh)ℓ aℓ (4.13)

Using (4.13) it is easy to see that ∂L
∂(∂uθ) vanishes when evaluated at the horizon, whereas

(∂uh
θ) is finite. We deduce therefore that the free energy at low temperatures for massive

§Holographic renormalization will in principle induce additional finite terms to the result. These terms

however, are independent of the charge density d.

– 9 –
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Dq probes — except for a temperature independent term — is given by the free energy of

a single string times the charge density.

The picture is now clear. The low temperature behavior of the free energy requires

us to zoom in the near horizon region. In this regime, the Dq brane resembles a long

narrow cylinder emanating from the horizon; a spike. This spike represents a bundle of

strings dissolved in the Dq brane giving rise to the electric field on it [7]. It is these strings

which give the leading (non-trivial) contribution to the free energy at low temperatures.

As a result, the entropy and the specific heat for massive flavors will be given by (3.10)

and (3.11) respectively. We see that the details of the embedding are irrelevant at low

temperatures, with the entropy being independent of the mass and the condensate of the

dual theory.

5 Drag on a single quark and DC conductivity of the Dq probe

For general metric the drag has been obtained in [35] following the same logic as in the

AdSp+2 calculation of [29, 36]. For metrics of the general form

ds2 = −gttdt2 + gxxdx2 + guudu2

the magnitude of the drag force is given by

Fdrag =
v

2πl2s
gxx =

v

2πl2s
(u∗)(7−p)/2 (5.1)

where we used that the metric component is to be evaluated at the special radial coordinate

u∗ where gtt = v2gxx. For us this yields

u∗ =
uh

(1 − v2)
1

7−p

(5.2)

and so

Fdrag = v

(

216−3pπ(13−3p)/2Γ

(

7 − p

2

)

(7 − p)p−7

)
1

5−p λ
1

5−p T
7−p

5−p

√
1 − v2

(5.3)

For p = 3 this reduces to π
2

√
2λT 2 again in agreement with [29]. The drag coefficient µM

of [29] can still be introduced via the definition

Fdrag = µM
v√

1 − v2
. (5.4)

This can easily be related to the leading density dependent term in the conductivity.

The full conductivity found in [37] has the form σfull =
√

σ2
0 + σ2, where σ is a linear

density dependent term and σ0 is, at least for massless quarks, a density independent term

due to the thermally populated quarks and antiquarks. Since σ0 is density independent,

we take σ, the leading density dependent term, as the definition of the conductivity of

the finite density chunk of matter (which is immersed into a thermal bath with its own

non-vanishing conductivity σ0). Typically, σ0 scales as a positive power of T and so can

be neglected in the limit of high density, low temperature in which we calculated the heat
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capacity in the last section. In low dimensional defects sometimes σ0 scales as an inverse

power of T but in all cases but p = 4 and ds = 1 σ dominates over σ0 at low temperatures.

For p = 4, ds = 1 both contributions to the conductivity scale as T 3 and so it depends on

the density which one dominates. σ0 can also be made arbitrarily small by increasing the

mass [37]; taking σ to dominate the conductivity this way makes it appear more natural

that one is dominated by the properties of a single string.

According to [37] to leading order in the density d the conductivity then is universally

given by

σ = d(2πl2s)g
−1
xx (5.5)

where this time gxx has to be evaluated at u∗ where gttgxx = (2πl2s)
2E2 and E is the electric

field. So for us

u∗ = uh

(

1 + (2πl2s)
2E2/u7−p

h

)
1

7−p
(5.6)

and hence

σ−1 =

(

216−3pπ(13−3p)/2Γ

(

7 − p

2

)

(7 − p)p−7

)
1

5−p

λ
1

5−p T
7−p

5−p

√
e2 + 1

d
(5.7)

where e = (2πl2s)E/u
(7−p)/2
h . As in the D3/D7 example analyzed in [37] this leading order

d resistivity directly follows from the drag force. A single quark experiencing the drag force

of eq. (5.1) reaches a steady state velocity vsteady given by Fdrag = E, or in other words

vsteady =
E

µM

1
√

1 + E2/(µM)2
=

E

µM

1√
1 + e2

. (5.8)

The resulting current for a finite density d of such quarks is then simply jx = dvsteady

yielding precisely the conductivity eq. (5.5). So indeed for any Dq probe brane in a given

Dp background the manifestly q-independent drag force for a single string gives rise to a

universal (q-independent) leading d behavior of the conductivities.

6 Resistivity at zero density

So far we have been mostly focusing on the leading contribution to heat capacity and con-

ductivity in the limit of large density, low temperatures. It is in this limit that we found

universal (q-independent) properties. The calculation of [37] also allows to determine σ0,

the conductivity of the thermal plasma itself, even without any density. As we mentioned

above, the full conductivity simply adds the two contributions in quadrature. Unlike the

leading density dependent σ, σ0 does depend on details of the defect. In particular, it

depends on the spatial dimension ds of the defect. Typically σ0 is a positive power of tem-

perature (or at least less negative than the leading density dependent piece) and so is irrel-

evant in the low temperature, large density limit. According to [37] σ0 ∼ e−Φg
(ds−2)/2
xx g

k/2
SS ,

again to be evaluated at u∗, where u∗ = uh+O(E2) according to eq. (5.6). gSS here denotes

the prefactor of the metric components of the internal sphere, that is ds2 = . . . + gSSdΩ2
k.

At u = uh we have that e−Φ ∼ H(p−3)/4 ∼ u
(p−7)(p−3)/4
h ∼ T (p−3)(p−7)/(2(5−p)) whereas

– 11 –
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Figure 2. Resistivity scaling factor x, for all Dp/Dq systems with p=2, 3 or 4 and 4 or 6 ND

directions, as a function of ds, the number of spatial dimensions. Shape/color distinguishes p=4 (red

circles), p=3 (green squares) and p=2 (blue triangles). Open/filled symbols are 6/4 ND direction

configurations.

g
1/2
xx ∼ u

−(p−7)/4
h ∼ T−(p−7)/(2(5−p)) and g

1/2
SS ∼ u

(p−3)/4
h ∼ T (p−3)/(2(5−p)). With this it is

straightforward to calculate the temperature dependence of the resistivities at zero density.

In particular,

ρ0 ∼ T x x = − 2

5 − p

[

(p − 7)(q − 2ds − 2 + p)

4
+ q − ds − 1

]

(6.1)

For the D4/D8 system studied previously in [38] ρ0 ∼ T−2. This is in agreement with the

result obtained from (6.1) for p = 4, q = 8 and ds = 3.

Note that among the various probe branes with 4 or 6 ND directions, whose resistivities

are displayed in figure 2, examples with resistivity linear in T as observed in the strange

metal phase of high Tc superconductors, are p = 3, ds = 1 for any q as well as p = 4,

ds = 2 with q = 4. For the conformal p = 3 case, ds = 1, that is we study a 1+1 d defect

in a conformal theory. In this case linear resistivity is indeed guaranteed by conformal

invariance. As current and charge densities have scaling dimension ds and the electric field

has scaling dimension 2 in any dimension, the resistivity has dimension 2 − ds, and in a

conformal theory has to scale as T 2−ds as this is the only scale available. To see such a

behavior in a higher dimensional (that is ds > 1) conformal theory with a gravitational

dual, one would want to see an emergent AdS3 geometry in the infrared, very similar to

the emergent AdS2 that has been seen in the recent studies of [39].

7 Conclusions

To summarize, we observed that some thermodynamic and transport properties of the

Dp/Dq systems at finite density and low temperatures do not depend on the dimensionality

of the probe Dq brane. In particular, the leading behavior of the specific heat at low

temperatures (summarized in table 1) is q-independent. In the case of p = 4 this implies a

heat capacity linear in T at low temperatures, a characteristic behavior of Fermi liquids.

– 12 –
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This is puzzling from the field theoretic point of view: while for q = 8 the massless degrees

of freedom coming from the D4/D8 intersections are fermions, it is no longer the case in

general, and charged bosons are expected to condense at finite chemical potential. We

leave the detailed analysis of degrees of freedom responsible for such a behavior for future

investigation.

The p = 3 case is an exception, since the leading behavior of the specific heat at low

temperatures now depends on q. One can trace this down to the fact that the leading,

q-independent term in the entropy at low temperature is constant and hence does not

contribute to cV . The existence of a degenerate ground state is interesting in its own right:

for example this is a necessary feature of the models investigated in [39] and might be

responsible for the deviation from the Landau Fermi liquid behavior.

We also investigate the case of massive embeddings and find that the universality

of the low temperature behavior of free energy and specific heat is a generic feature of

the DBI action. In this limit the leading contribution comes from the narrow long tube

embedding which can be also described as a bundle of fundamental strings. The details of

the embedding are irrelevant in this regime, and leading order behavior is not sensitive to

the mass and condensate of the dual theory.

Another interesting q-independent quantity is the leading (in charge density) DC con-

ductivity of the Dp/Dq brane system. As in the case of specific heat, the q-independence

is related to the fact that the charge transport can be described in terms of fundamental

strings. In the presence of boundary electric field, the equilibrium velocity of the string is

determined by the drag force; the resulting (manifestly q-independent) conductivity pre-

cisely agrees with the leading behavior of the Dp/Dq conductivity computed from the

DBI action.

We have also investigated some properties of the Dp/Dq systems which are less uni-

versal and depend on the details of the probe brane. In particular, figure 1 summarizes the

behavior of the speed of sound propagating on the defects [see also eq. (3.12)]. It is possible

to have values of c2 both smaller and larger than the conformal value c2 = 1/ds. The low

temperature behavior of the density-independent component of the resistivity is displayed

in figure 2. Linear temperature dependence (relevant for the “strange metal” phase above

the superconducting dome) shows up in two cases; for 1 + 1 dimensional defects in a four-

dimensional superconformal field theory where it is dictated by conformal invariance, and

for 2 + 1-dimensional defects in a five-dimensional supersymmetric field theory.
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